n/p-harmonic maps: Regularity for the sphere case
نویسندگان
چکیده
منابع مشابه
Regularity of Dirac-harmonic maps
For any n-dimensional compact spin Riemannian manifold M with a given spin structure and a spinor bundle ΣM , and any compact Riemannian manifold N , we show an ǫ-regularity theorem for weakly Dirac-harmonic maps (φ, ψ) : M ⊗ΣM → N ⊗ φ∗TN . As a consequence, any weakly Dirac-harmonic map is proven to be smooth when n = 2. A weak convergence theorem for approximate Dirac-harmonic maps is establi...
متن کاملRegularity of generalized sphere valued p - harmonic maps with small mean oscillations
We prove (see Theorem 1.3 below) that a generalized harmonic map into a round sphere, i.e. a map u ∈ W 1,1 loc ( , Sn−1) which solves the system div (ui∇uj − uj∇ui) = 0, i, j = 1, . . . , n, is smooth as soon as |∇u| ∈ L for any q > 1, and the norm of u in BMO is sufficiently small. Here, ⊂ R is open, and m, n are arbitrary. This extends various earlier results of Almeida [1], Ge [15], and R. M...
متن کاملBoundary Regularity and the Dirichlet Problem for Harmonic Maps
In a previous paper [10] we developed an interior regularity theory for energy minimizing harmonic maps into Riemannian manifolds. In the first two sections of this paper we prove boundary regularity for energy minimizing maps with prescribed Dirichlet boundary condition. We show that such maps are regular in a full neighborhood of the boundary, assuming appropriate regularity on the manifolds,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Calculus of Variations
سال: 2014
ISSN: 1864-8258,1864-8266
DOI: 10.1515/acv-2012-0107